Object representations for multiple visual categories overlap in lateral occipital and medial fusiform cortex.
نویسندگان
چکیده
How representations of visual objects are maintained across changes in viewpoint is a central issue in visual perception. Whether neural processes underlying view-invariant recognition involve distinct subregions within extrastriate visual cortex for distinct categories of visual objects remains unresolved. We used event-related functional magnetic resonance imaging in 16 healthy volunteers to map visual cortical areas responding to a large set (156) of exemplars from 3 object categories (faces, houses, and chairs), each repeated once after a variable time lag (3-7 intervening stimuli). Exemplars were repeated with the same viewpoint (but different retinal size) or with different viewpoint and size. The task was kept constant across object categories (judging items as "young" vs. "old"). We identified object-selective adaptation effects by comparing neural responses to the first presentation versus repetition of each individual exemplar. We found that exemplar-specific adaptation effects partly overlapped with regions showing category-selective responses (as identified using a separate localizer scan). These included the lateral fusiform gyrus (FG) for faces, parahippocampal gyrus for houses, and lateral occipital complex (LOC) for chairs. In face-selective fusiform gyrus (FG), adaptation effects occurred only for faces repeated with the same viewpoint, but not with a different viewpoint, confirming previous studies using faces only. By contrast, a region in right medial FG, adjacent to but nonoverlapping with the more lateral and face-selective FG, showed repetition effects for faces and to a lesser extent for other objects, regardless of changes in viewpoint or in retinal image-size. Category- and viewpoint-independent repetition effects were also found in bilateral LOC. Our results reveal a common neural substrate in bilateral LOC and right medial FG underlying view-invariant and category-independent recognition for multiple object identities, with only a relative preference for faces in medial FG but no selectivity in LOC.
منابع مشابه
Division of Labor between Lateral and Ventral Extrastriate Representations of Faces, Bodies, and Objects
The occipito-temporal cortex is strongly implicated in carrying out the high-level computations associated with vision. In human neuroimaging studies, focal regions are consistently found within this broad region that respond strongly and selectively to faces, bodies, or objects. A notable feature of these selective regions is that they are found in pairs. In the posterior-lateral occipito-temp...
متن کاملNeural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex.
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiform/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is pre...
متن کاملEngagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise
The human visual pathways that are specialized for object recognition stretch from lateral occipital cortex (LO) to the ventral surface of the temporal lobe, including the fusiform gyrus. Plasticity in these pathways supports the acquisition of visual expertise, but precisely how training affects the different regions remains unclear. We used functional magnetic resonance imaging to measure neu...
متن کاملObjects and Categories: Feature Statistics and Object Processing in the Ventral Stream
Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the ...
متن کاملSemantic versus perceptual priming in fusiform cortex.
What is the nature of the representations of visual objects in the human brain? How abstract are these representations? Recently, Koustaal et al. have reported evidence of neural correlates of semantic priming in the left fusiform gyrus 1. They showed that when subjects see repeated presentations of pictures previously seen, or new pictures from object categories previously seen, there is a red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2009